Papers
Topics
Authors
Recent
2000 character limit reached

Debiased Contrastive Learning of Unsupervised Sentence Representations (2205.00656v1)

Published 2 May 2022 in cs.CL

Abstract: Recently, contrastive learning has been shown to be effective in improving pre-trained LLMs (PLM) to derive high-quality sentence representations. It aims to pull close positive examples to enhance the alignment while push apart irrelevant negatives for the uniformity of the whole representation space. However, previous works mostly adopt in-batch negatives or sample from training data at random. Such a way may cause the sampling bias that improper negatives (e.g. false negatives and anisotropy representations) are used to learn sentence representations, which will hurt the uniformity of the representation space. To address it, we present a new framework \textbf{DCLR} (\underline{D}ebiased \underline{C}ontrastive \underline{L}earning of unsupervised sentence \underline{R}epresentations) to alleviate the influence of these improper negatives. In DCLR, we design an instance weighting method to punish false negatives and generate noise-based negatives to guarantee the uniformity of the representation space. Experiments on seven semantic textual similarity tasks show that our approach is more effective than competitive baselines. Our code and data are publicly available at the link: \textcolor{blue}{\url{https://github.com/RUCAIBox/DCLR}}.

Citations (94)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.