Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sequence Learning and Consolidation on Loihi using On-chip Plasticity (2205.00643v1)

Published 2 May 2022 in cs.NE

Abstract: In this work we develop a model of predictive learning on neuromorphic hardware. Our model uses the on-chip plasticity capabilities of the Loihi chip to remember observed sequences of events and use this memory to generate predictions of future events in real time. Given the locality constraints of on-chip plasticity rules, generating predictions without interfering with the ongoing learning process is nontrivial. We address this challenge with a memory consolidation approach inspired by hippocampal replay. Sequence memory is stored in an initial memory module using spike-timing dependent plasticity. Later, during an offline period, memories are consolidated into a distinct prediction module. This second module is then able to represent predicted future events without interfering with the activity, and plasticity, in the first module, enabling online comparison between predictions and ground-truth observations. Our model serves as a proof-of-concept that online predictive learning models can be deployed on neuromorphic hardware with on-chip plasticity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.