Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Large-Scale Multi-Document Summarization with Information Extraction and Compression (2205.00548v1)

Published 1 May 2022 in cs.CL and cs.IR

Abstract: We develop an abstractive summarization framework independent of labeled data for multiple heterogeneous documents. Unlike existing multi-document summarization methods, our framework processes documents telling different stories instead of documents on the same topic. We also enhance an existing sentence fusion method with a uni-directional LLM to prioritize fused sentences with higher sentence probability with the goal of increasing readability. Lastly, we construct a total of twelve dataset variations based on CNN/Daily Mail and the NewsRoom datasets, where each document group contains a large and diverse collection of documents to evaluate the performance of our model in comparison with other baseline systems. Our experiments demonstrate that our framework outperforms current state-of-the-art methods in this more generic setting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.