Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Molecular Identification from AFM images using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks (2205.00449v1)

Published 1 May 2022 in cond-mat.mtrl-sci, cond-mat.dis-nn, and cs.LG

Abstract: Despite being the main tool to visualize molecules at the atomic scale, AFM with CO-functionalized metal tips is unable to chemically identify the observed molecules. Here we present a strategy to address this challenging task using deep learning techniques. Instead of identifying a finite number of molecules following a traditional classification approach, we define the molecular identification as an image captioning problem. We design an architecture, composed of two multimodal recurrent neural networks, capable of identifying the structure and composition of an unknown molecule using a 3D-AFM image stack as input. The neural network is trained to provide the name of each molecule according to the IUPAC nomenclature rules. To train and test this algorithm we use the novel QUAM-AFM dataset, which contains almost 700,000 molecules and 165 million AFM images. The accuracy of the predictions is remarkable, achieving a high score quantified by the cumulative BLEU 4-gram, a common metric in language recognition studies.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube