Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic data structures for parameterized string problems (2205.00441v1)

Published 1 May 2022 in cs.DS

Abstract: We revisit classic string problems considered in the area of parameterized complexity, and study them through the lens of dynamic data structures. That is, instead of asking for a static algorithm that solves the given instance efficiently, our goal is to design a data structure that efficiently maintains a solution, or reports a lack thereof, upon updates in the instance. We first consider the Closest String problem, for which we design randomized dynamic data structures with amortized update times $d{\mathcal{O}(d)}$ and $|\Sigma|{\mathcal{O}(d)}$, respectively, where $\Sigma$ is the alphabet and $d$ is the assumed bound on the maximum distance. These are obtained by combining known static approaches to Closest String with color-coding. Next, we note that from a result of Frandsen et al.~[J. ACM'97] one can easily infer a meta-theorem that provides dynamic data structures for parameterized string problems with worst-case update time of the form $\mathcal{O}(\log \log n)$, where $k$ is the parameter in question and $n$ is the length of the string. We showcase the utility of this meta-theorem by giving such data structures for problems Disjoint Factors and Edit Distance. We also give explicit data structures for these problems, with worst-case update times $\mathcal{O}(k2{k}\log \log n)$ and $\mathcal{O}(k2\log \log n)$, respectively. Finally, we discuss how a lower bound methodology introduced by Amarilli et al.~[ICALP'21] can be used to show that obtaining update time $\mathcal{O}(f(k))$ for Disjoint Factors and Edit Distance is unlikely already for a constant value of the parameter $k$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.