Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Johnson-Lindenstrauss Lemma for Clustering and Subspace Approximation: From Coresets to Dimension Reduction (2205.00371v3)

Published 1 May 2022 in cs.DS

Abstract: We study the effect of Johnson-Lindenstrauss transforms in various projective clustering problems, generalizing recent results which only applied to center-based clustering [MMR19]. We ask the general question: for a Euclidean optimization problem and an accuracy parameter $\epsilon \in (0, 1)$, what is the smallest target dimension $t \in \mathbb{N}$ such that a Johnson-Lindenstrauss transform $\Pi \colon \mathbb{R}d \to \mathbb{R}t$ preserves the cost of the optimal solution up to a $(1+\epsilon)$-factor. We give a new technique which uses coreset constructions to analyze the effect of the Johnson-Lindenstrauss transform. Our technique, in addition applying to center-based clustering, improves on (or is the first to address) other Euclidean optimization problems, including: $\bullet$ For $(k,z)$-subspace approximation: we show that $t = \tilde{O}(zk2 / \epsilon3)$ suffices, whereas the prior best bound, of $O(k/\epsilon2)$, only applied to the case $z = 2$ [CEMMP15]. $\bullet$ For $(k,z)$-flat approximation: we show $t = \tilde{O}(zk2/\epsilon3)$ suffices, completely removing the dependence on $n$ from the prior bound $\tilde{O}(zk2 \log n/\epsilon3)$ of [KR15]. $\bullet$ For $(k,z)$-line approximation: we show $t = O((k \log \log n + z + \log(1/\epsilon)) / \epsilon3)$ suffices, and ours is the first to give any dimension reduction result.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.