Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Predict; Do not React for Enabling Efficient Fine Grain DVFS in GPUs (2205.00121v1)

Published 30 Apr 2022 in cs.AR

Abstract: With the continuous improvement of on-chip integrated voltage regulators (IVRs) and fast, adaptive frequency control, dynamic voltage-frequency scaling (DVFS) transition times have shrunk from the microsecond to the nanosecond regime, providing additional opportunities to improve energy efficiency. The key to unlocking the continued improvement in voltage-frequency circuit technology is the creation of new, smarter DVFS mechanisms that better adapt to rapid fluctuations in workload demand. It is particularly important to optimize fine-grain DVFS mechanisms for graphics processing units (GPUs) as the chips become ever more important workhorses in the datacenter. However, massive amount of thread-level parallelism in GPUs makes it uniquely difficult to determine the optimal voltage-frequency state at run-time. Existing solutions-mostly designed for single-threaded CPUs and longer time scales-fail to consider the seemingly chaotic, highly varying nature of GPU workloads at short time scales. This paper proposes a novel prediction mechanism, PCSTALL, that is tailored for emerging DVFS capabilities in GPUs and achieves near-optimal energy efficiency. Using the insights from our fine-grained workload analysis, we propose a wavefront-level program counter (PC) based DVFS mechanism that improves program behavior prediction accuracy by 32% on average for a wide set of GPU applications at 1 microsecond DVFS time epochs. Compared to the current state-of-art, our PC-based technique achieves 19% average improvement when optimized for Energy-Delay-Squared Product at 50 microsecond time epochs, reaching 32% power efficiencies when operated with 1 microsecond DVFS technologies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube