Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Pareto-Optimal and Almost Envy-Free Allocations of Indivisible Goods (2204.14229v2)

Published 29 Apr 2022 in cs.GT

Abstract: We study the problem of fair and efficient allocation of a set of indivisible goods to agents with additive valuations using the popular fairness notions of envy-freeness up to one good (EF1) and equitability up to one good (EQ1) in conjunction with Pareto-optimality (PO). There exists a pseudo-polynomial time algorithm to compute an EF1+PO allocation and a non-constructive proof of the existence of allocations that are both EF1 and fractionally Pareto-optimal (fPO), which is a stronger notion than PO. We present a pseudo-polynomial time algorithm to compute an EF1+fPO allocation, thereby improving the earlier results. Our techniques also enable us to show that an EQ1+fPO allocation always exists when the values are positive and that it can be computed in pseudo-polynomial time. We also consider the class of $k$-ary instances where $k$ is a constant, i.e., each agent has at most $k$ different values for the goods. For such instances, we show that an EF1+fPO allocation can be computed in strongly polynomial time. When all values are positive, we show that an EQ1+fPO allocation for such instances can be computed in strongly polynomial time. Next, we consider instances where the number of agents is constant and show that an EF1+PO (likewise, an EQ1+PO) allocation can be computed in polynomial time. These results significantly extend the polynomial-time computability beyond the known cases of binary or identical valuations. We also design a polynomial-time algorithm that computes a Nash welfare maximizing allocation when there are constantly many agents with constant many different values for the goods. Finally, on the complexity side, we show that the problem of computing an EF1+fPO allocation lies in the complexity class PLS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jugal Garg (50 papers)
  2. Aniket Murhekar (12 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.