Deterministic Distributed Sparse and Ultra-Sparse Spanners and Connectivity Certificates (2204.14086v2)
Abstract: This paper presents efficient distributed algorithms for a number of fundamental problems in the area of graph sparsification: We provide the first deterministic distributed algorithm that computes an ultra-sparse spanner in $\textrm{polylog}(n)$ rounds in weighted graphs. Concretely, our algorithm outputs a spanning subgraph with only $n+o(n)$ edges in which the pairwise distances are stretched by a factor of at most $O(\log n \;\cdot\; 2{O(\log* n)})$. We provide a $\textrm{polylog}(n)$-round deterministic distributed algorithm that computes a spanner with stretch $(2k-1)$ and $O(nk + n{1 + 1/k} \log k)$ edges in unweighted graphs and with $O(n{1 + 1/k} k)$ edges in weighted graphs. We present the first $\textrm{polylog}(n)$-round randomized distributed algorithm that computes a sparse connectivity certificate. For an $n$-node graph $G$, a certificate for connectivity $k$ is a spanning subgraph $H$ that is $k$-edge-connected if and only if $G$ is $k$-edge-connected, and this subgraph $H$ is called sparse if it has $O(nk)$ edges. Our algorithm achieves a sparsity of $(1 + o(1))nk$ edges, which is within a $2(1 + o(1))$ factor of the best possible.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.