Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Noises of Multi-Agent Environments Can Improve Generalization: Agent-based Models meets Reinforcement Learning (2204.14076v1)

Published 26 Mar 2022 in cs.MA, cs.AI, and cs.LG

Abstract: We study the benefits of reinforcement learning (RL) environments based on agent-based models (ABM). While ABMs are known to offer microfoundational simulations at the cost of computational complexity, we empirically show in this work that their non-deterministic dynamics can improve the generalization of RL agents. To this end, we examine the control of an epidemic SIR environments based on either differential equations or ABMs. Numerical simulations demonstrate that the intrinsic noise in the ABM-based dynamics of the SIR model not only improve the average reward but also allow the RL agent to generalize on a wider ranges of epidemic parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.