Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Failed Disruption Propagation in Integer Genetic Programming (2204.13997v1)

Published 4 Apr 2022 in cs.NE and cs.AI

Abstract: We inject a random value into the evaluation of highly evolved deep integer GP trees 9743720 times and find 99.7percent Suggesting crossover and mutation's impact are dissipated and seldom propagate outside the program. Indeed only errors near the root node have impact and disruption falls exponentially with depth at between exp(-depth/3) and exp(-depth/5) for recursive Fibonacci GP trees, allowing five to seven levels of nesting between the runtime perturbation and an optimal test oracle for it to detect most errors. Information theory explains this locally flat fitness landscape is due to FDP. Overflow is not important and instead, integer GP, like deep symbolic regression floating point GP and software in general, is not fragile, is robust, is not chaotic and suffers little from Lorenz' butterfly. Keywords: genetic algorithms, genetic programming, SBSE, information loss, information funnels, entropy, evolvability, mutational robustness, optimal test oracle placement, neutral networks, software robustness, correctness attraction, diversity, software testing, theory of bloat, introns

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)