ExaASC: A General Target-Based Stance Detection Corpus in Arabic Language (2204.13979v1)
Abstract: Target-based Stance Detection is the task of finding a stance toward a target. Twitter is one of the primary sources of political discussions in social media and one of the best resources to analyze Stance toward entities. This work proposes a new method toward Target-based Stance detection by using the stance of replies toward a most important and arguing target in source tweet. This target is detected with respect to the source tweet itself and not limited to a set of pre-defined targets which is the usual approach of the current state-of-the-art methods. Our proposed new attitude resulted in a new corpus called ExaASC for the Arabic Language, one of the low resource languages in this field. In the end, we used BERT to evaluate our corpus and reached a 70.69 Macro F-score. This shows that our data and model can work in a general Target-base Stance Detection system. The corpus is publicly available1.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.