Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

PIE: a Parameter and Inference Efficient Solution for Large Scale Knowledge Graph Embedding Reasoning (2204.13957v2)

Published 29 Apr 2022 in cs.CL and cs.AI

Abstract: Knowledge graph (KG) embedding methods which map entities and relations to unique embeddings in the KG have shown promising results on many reasoning tasks. However, the same embedding dimension for both dense entities and sparse entities will cause either over parameterization (sparse entities) or under fitting (dense entities). Normally, a large dimension is set to get better performance. Meanwhile, the inference time grows log-linearly with the number of entities for all entities are traversed and compared. Both the parameter and inference become challenges when working with huge amounts of entities. Thus, we propose PIE, a \textbf{p}arameter and \textbf{i}nference \textbf{e}fficient solution. Inspired from tensor decomposition methods, we find that decompose entity embedding matrix into low rank matrices can reduce more than half of the parameters while maintaining comparable performance. To accelerate model inference, we propose a self-supervised auxiliary task, which can be seen as fine-grained entity typing. By randomly masking and recovering entities' connected relations, the task learns the co-occurrence of entity and relations. Utilizing the fine grained typing, we can filter unrelated entities during inference and get targets with possibly sub-linear time requirement. Experiments on link prediction benchmarks demonstrate the proposed key capabilities. Moreover, we prove effectiveness of the proposed solution on the Open Graph Benchmark large scale challenge dataset WikiKG90Mv2 and achieve the state of the art performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.