Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On global randomized block Kaczmarz algorithm for solving large-scale matrix equations (2204.13920v1)

Published 29 Apr 2022 in math.NA and cs.NA

Abstract: The randomized Kaczmarz algorithm is one of the most popular approaches for solving large-scale linear systems due to its simplicity and efficiency. In this paper, we propose two classes of global randomized Kaczmarz methods for solving large-scale linear matrix equations $AXB=C$, the global randomized block Kaczmarz algorithm and global randomized average block Kaczmarz algorithm. The feature of global randomized block Kaczmarz algorithm is the fact that the current iterate is projected onto the solution space of the sketched matrix equation at each iteration, while the global randomized average block Kaczmarz approach is pseudoinverse-free and therefore can be deployed on parallel computing units to achieve significant improvements in the computational time. We prove that these two methods linearly converge in the mean square to the minimum norm solution $X_*=A\dag CB\dag$ of a given linear matrix equation. The convergence rates depend on the geometric properties of the data matrices and their submatrices and on the size of the blocks. Numerical results reveal that our proposed algorithms are efficient and effective for solving large-scale matrix equations. In particular, they can also achieve satisfying performance when applied to image deblurring problems.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)