Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Por Qué Não Utiliser Alla Språk? Mixed Training with Gradient Optimization in Few-Shot Cross-Lingual Transfer (2204.13869v1)

Published 29 Apr 2022 in cs.CL

Abstract: The current state-of-the-art for few-shot cross-lingual transfer learning first trains on abundant labeled data in the source language and then fine-tunes with a few examples on the target language, termed target-adapting. Though this has been demonstrated to work on a variety of tasks, in this paper we show some deficiencies of this approach and propose a one-step mixed training method that trains on both source and target data with \textit{stochastic gradient surgery}, a novel gradient-level optimization. Unlike the previous studies that focus on one language at a time when target-adapting, we use one model to handle all target languages simultaneously to avoid excessively language-specific models. Moreover, we discuss the unreality of utilizing large target development sets for model selection in previous literature. We further show that our method is both development-free for target languages, and is also able to escape from overfitting issues. We conduct a large-scale experiment on 4 diverse NLP tasks across up to 48 languages. Our proposed method achieves state-of-the-art performance on all tasks and outperforms target-adapting by a large margin, especially for languages that are linguistically distant from the source language, e.g., 7.36% F1 absolute gain on average for the NER task, up to 17.60% on Punjabi.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.