Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DoPose-6D dataset for object segmentation and 6D pose estimation (2204.13613v2)

Published 28 Apr 2022 in cs.RO

Abstract: Scene understanding is essential in determining how intelligent robotic grasping and manipulation could get. It is a problem that can be approached using different techniques: seen object segmentation, unseen object segmentation, or 6D pose estimation. These techniques can even be extended to multi-view. Most of the work on these problems depends on synthetic datasets due to the lack of real datasets that are big enough for training and merely use the available real datasets for evaluation. This encourages us to introduce a new dataset (called DoPose-6D). The dataset contains annotations for 6D Pose estimation, object segmentation, and multi-view annotations, which serve all the pre-mentioned techniques. The dataset contains two types of scenes bin picking and tabletop, with the primary motive for this dataset collection being bin picking. We illustrate the effect of this dataset in the context of unseen object segmentation and provide some insights on mixing synthetic and real data for the training. We train a Mask R-CNN model that is practical to be used in industry and robotic grasping applications. Finally, we show how our dataset boosted the performance of a Mask R-CNN model. Our DoPose-6D dataset, trained network models, pipeline code, and ROS driver are available online.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.