Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pseudo strong labels for large scale weakly supervised audio tagging (2204.13430v1)

Published 28 Apr 2022 in cs.SD and eess.AS

Abstract: Large-scale audio tagging datasets inevitably contain imperfect labels, such as clip-wise annotated (temporally weak) tags with no exact on- and offsets, due to a high manual labeling cost. This work proposes pseudo strong labels (PSL), a simple label augmentation framework that enhances the supervision quality for large-scale weakly supervised audio tagging. A machine annotator is first trained on a large weakly supervised dataset, which then provides finer supervision for a student model. Using PSL we achieve an mAP of 35.95 balanced train subset of Audioset using a MobileNetV2 back-end, significantly outperforming approaches without PSL. An analysis is provided which reveals that PSL mitigates missing labels. Lastly, we show that models trained with PSL are also superior at generalizing to the Freesound datasets (FSD) than their weakly trained counterparts.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.