Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Controllable Image Captioning (2204.13324v4)

Published 28 Apr 2022 in cs.CV

Abstract: State-of-the-art image captioners can generate accurate sentences to describe images in a sequence to sequence manner without considering the controllability and interpretability. This, however, is far from making image captioning widely used as an image can be interpreted in infinite ways depending on the target and the context at hand. Achieving controllability is important especially when the image captioner is used by different people with different way of interpreting the images. In this paper, we introduce a novel framework for image captioning which can generate diverse descriptions by capturing the co-dependence between Part-Of-Speech tags and semantics. Our model decouples direct dependence between successive variables. In this way, it allows the decoder to exhaustively search through the latent Part-Of-Speech choices, while keeping decoding speed proportional to the size of the POS vocabulary. Given a control signal in the form of a sequence of Part-Of-Speech tags, we propose a method to generate captions through a Transformer network, which predicts words based on the input Part-Of-Speech tag sequences. Experiments on publicly available datasets show that our model significantly outperforms state-of-the-art methods on generating diverse image captions with high qualities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)