Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Top-k Community Similarity Search Over Large-Scale Road Networks (Technical Report) (2204.13224v1)

Published 27 Apr 2022 in cs.DB

Abstract: With the urbanization and development of infrastructure, the community search over road networks has become increasingly important in many real applications such as urban/city planning, social study on local communities, and community recommendations by real estate agencies. In this paper, we propose a novel problem, namely top-k community similarity search (Top-kCS2) over road networks, which efficiently and effectively obtains k spatial communities that are the most similar to a given query community in road-network graphs. In order to efficiently and effectively tackle the Top-kCS2 problem, in this paper, we will design an effective similarity measure between spatial communities, and propose a framework for retrieving Top-kCS2 query answers, which integrates offline pre-processing and online computation phases. Moreover, we also consider a variant, namely continuous top-k community similarity search (CTop-kCS2), where the query community continuously moves along a query line segment. We develop an efficient algorithm to split query line segments into intervals, incrementally obtain similar candidate communities for each interval and define actual CTop-kCS2 query answers. Extensive experiments have been conducted on real and synthetic data sets to confirm the efficiency and effectiveness of our proposed Top-kCS2 and CTop-kCS2 approaches under various parameter setting

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.