Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards a High Efficiency of Native NDN over Wi-Fi 6 for the Internet of Vehicles (2204.13213v1)

Published 27 Apr 2022 in cs.NI

Abstract: Named Data Networking (NDN) is a top-notched architecture to deal with content distribution over the Internet. With the explosion of video streaming transmission and future massive Internet of Things and Vehicles (IoT/IoV) traffic, evolving Wi-Fi networks will play an essential role in such ecosystems. However, Native NDN deployment over wireless networks may not perform well. Wi-Fi broadcasts/multicasts result in reduced throughput due to the usage of basic service mode. Despite recent initial works addressing that issue, further studies and proposals are required to boost the adoption of Native NDN. We advocate that an initial step towards designing a feasible Native NDN over wireless networks should be understanding the challenges in emerging scenarios and providing a uniform baseline to compare and advance proposals. To this end, first, we highlight some challenges and directions to improve throughput and energy efficiency, reduce processing overhead, and security issues. Next, we propose a variant of NDN that minimizes the problems identified by performing transmission via unicast to avoid storms in wireless networks. Finally, we conducted a performance evaluation to compare Standard Native NDN with our proposal on Wi-Fi 6 vehicular networks. The results show that our proposal outperforms the Standard NDN in the evaluated scenarios, reaching values close to 89% of satisfied requests, achieving more than 200% of data received than Standard NDN.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube