Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AutoLossGen: Automatic Loss Function Generation for Recommender Systems (2204.13160v1)

Published 27 Apr 2022 in cs.IR, cs.AI, and cs.LG

Abstract: In recommendation systems, the choice of loss function is critical since a good loss may significantly improve the model performance. However, manually designing a good loss is a big challenge due to the complexity of the problem. A large fraction of previous work focuses on handcrafted loss functions, which needs significant expertise and human effort. In this paper, inspired by the recent development of automated machine learning, we propose an automatic loss function generation framework, AutoLossGen, which is able to generate loss functions directly constructed from basic mathematical operators without prior knowledge on loss structure. More specifically, we develop a controller model driven by reinforcement learning to generate loss functions, and develop iterative and alternating optimization schedule to update the parameters of both the controller model and the recommender model. One challenge for automatic loss generation in recommender systems is the extreme sparsity of recommendation datasets, which leads to the sparse reward problem for loss generation and search. To solve the problem, we further develop a reward filtering mechanism for efficient and effective loss generation. Experimental results show that our framework manages to create tailored loss functions for different recommendation models and datasets, and the generated loss gives better recommendation performance than commonly used baseline losses. Besides, most of the generated losses are transferable, i.e., the loss generated based on one model and dataset also works well for another model or dataset. Source code of the work is available at https://github.com/rutgerswiselab/AutoLossGen.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com