Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

On the Relationship Between Explanations, Fairness Perceptions, and Decisions (2204.13156v3)

Published 27 Apr 2022 in cs.HC and cs.AI

Abstract: It is known that recommendations of AI-based systems can be incorrect or unfair. Hence, it is often proposed that a human be the final decision-maker. Prior work has argued that explanations are an essential pathway to help human decision-makers enhance decision quality and mitigate bias, i.e., facilitate human-AI complementarity. For these benefits to materialize, explanations should enable humans to appropriately rely on AI recommendations and override the algorithmic recommendation when necessary to increase distributive fairness of decisions. The literature, however, does not provide conclusive empirical evidence as to whether explanations enable such complementarity in practice. In this work, we (a) provide a conceptual framework to articulate the relationships between explanations, fairness perceptions, reliance, and distributive fairness, (b) apply it to understand (seemingly) contradictory research findings at the intersection of explanations and fairness, and (c) derive cohesive implications for the formulation of research questions and the design of experiments.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.