BiTimeBERT: Extending Pre-Trained Language Representations with Bi-Temporal Information (2204.13032v4)
Abstract: Time is an important aspect of documents and is used in a range of NLP and IR tasks. In this work, we investigate methods for incorporating temporal information during pre-training to further improve the performance on time-related tasks. Compared with common pre-trained LLMs like BERT which utilize synchronic document collections (e.g., BookCorpus and Wikipedia) as the training corpora, we use long-span temporal news article collection for building word representations. We introduce BiTimeBERT, a novel language representation model trained on a temporal collection of news articles via two new pre-training tasks, which harnesses two distinct temporal signals to construct time-aware language representations. The experimental results show that BiTimeBERT consistently outperforms BERT and other existing pre-trained models with substantial gains on different downstream NLP tasks and applications for which time is of importance (e.g., the accuracy improvement over BERT is 155\% on the event time estimation task).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.