Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RankMat : Matrix Factorization with Calibrated Distributed Embedding and Fairness Enhancement (2204.13016v1)

Published 27 Apr 2022 in cs.IR

Abstract: Matrix Factorization is a widely adopted technique in the field of recommender system. Matrix Factorization techniques range from SVD, LDA, pLSA, SVD++, MatRec, Zipf Matrix Factorization and Item2Vec. In recent years, distributed word embeddings have inspired innovation in the area of recommender systems. Word2vec and GloVe have been especially emphasized in many industrial application scenario such as Xiaomi's recommender system. In this paper, we propose a new matrix factorization inspired by the theory of power law and GloVe. Instead of the exponential nature of GloVe model, we take advantage of Pareto Distribution to model our loss function. Our method is explainable in theory and easy-to-implement in practice. In the experiment section, we prove our approach is superior to vanilla matrix factorization technique and comparable with GloVe-based model in both accuracy and fairness metrics.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.