Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Lyapunov operator \varphi-functions, with an application to matrix-valued exponential integrators (2204.12976v1)

Published 27 Apr 2022 in math.NA and cs.NA

Abstract: In this paper, we develop efficient and accurate evaluation for the Lyapunov operator function $\varphi_l(\mathcal{L}_A)[Q],$ where $\varphi_l(\cdot)$ is the function related to the exponential, $\mathcal{L}_A$ is a Lyapunov operator and $Q$ is a symmetric and full-rank matrix. An important application of the algorithm is to the matrix-valued exponential integrators for matrix differential equations such as differential Lyapunov equations and differential Riccati equations. The method is exploited by using the modified scaling and squaring procedure combined with the truncated Taylor series. A quasi-backward error analysis is presented to determine the value of the scaling parameter and the degree of the Taylor approximation. Numerical experiments show that the algorithm performs well in both accuracy and efficiency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.