Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards assessing agricultural land suitability with causal machine learning (2204.12956v1)

Published 27 Apr 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Understanding the suitability of agricultural land for applying specific management practices is of great importance for sustainable and resilient agriculture against climate change. Recent developments in the field of causal machine learning enable the estimation of intervention impacts on an outcome of interest, for samples described by a set of observed characteristics. We introduce an extensible data-driven framework that leverages earth observations and frames agricultural land suitability as a geospatial impact assessment problem, where the estimated effects of agricultural practices on agroecosystems serve as a land suitability score and guide decision making. We formulate this as a causal machine learning task and discuss how this approach can be used for agricultural planning in a changing climate. Specifically, we extract the agricultural management practices of "crop rotation" and "landscape crop diversity" from crop type maps, account for climate and land use data, and use double machine learning to estimate their heterogeneous effect on Net Primary Productivity (NPP), within the Flanders region of Belgium from 2010 to 2020. We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP. Finally, we observe considerable effect heterogeneity in space for both practices and analyze it.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube