Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

CATrans: Context and Affinity Transformer for Few-Shot Segmentation (2204.12817v1)

Published 27 Apr 2022 in cs.CV

Abstract: Few-shot segmentation (FSS) aims to segment novel categories given scarce annotated support images. The crux of FSS is how to aggregate dense correlations between support and query images for query segmentation while being robust to the large variations in appearance and context. To this end, previous Transformer-based methods explore global consensus either on context similarity or affinity map between support-query pairs. In this work, we effectively integrate the context and affinity information via the proposed novel Context and Affinity Transformer (CATrans) in a hierarchical architecture. Specifically, the Relation-guided Context Transformer (RCT) propagates context information from support to query images conditioned on more informative support features. Based on the observation that a huge feature distinction between support and query pairs brings barriers for context knowledge transfer, the Relation-guided Affinity Transformer (RAT) measures attention-aware affinity as auxiliary information for FSS, in which the self-affinity is responsible for more reliable cross-affinity. We conduct experiments to demonstrate the effectiveness of the proposed model, outperforming the state-of-the-art methods.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.