Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Surrogate Assisted Evolutionary Multi-objective Optimisation applied to a Pressure Swing Adsorption system (2204.12585v1)

Published 28 Mar 2022 in cs.NE, cs.CE, and cs.LG

Abstract: Chemical plant design and optimisation have proven challenging due to the complexity of these real-world systems. The resulting complexity translates into high computational costs for these systems' mathematical formulations and simulation models. Research has illustrated the benefits of using machine learning surrogate models as substitutes for computationally expensive models during optimisation. This paper extends recent research into optimising chemical plant design and operation. The study further explores Surrogate Assisted Genetic Algorithms (SA-GA) in more complex variants of the original plant design and optimisation problems, such as the inclusion of parallel and feedback components. The novel extension to the original algorithm proposed in this study, Surrogate Assisted NSGA-\Romannum{2} (SA-NSGA), was tested on a popular literature case, the Pressure Swing Adsorption (PSA) system. We further provide extensive experimentation, comparing various meta-heuristic optimisation techniques and numerous machine learning models as surrogates. The results for both sets of systems illustrate the benefits of using Genetic Algorithms as an optimisation framework for complex chemical plant system design and optimisation for both single and multi-objective scenarios. We confirm that Random Forest surrogate assisted Evolutionary Algorithms can be scaled to increasingly complex chemical systems with parallel and feedback components. We further find that combining a Genetic Algorithm framework with Machine Learning Surrogate models as a substitute for long-running simulation models yields significant computational efficiency improvements, 1.7 - 1.84 times speedup for the increased complexity examples and a 2.7 times speedup for the Pressure Swing Adsorption system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.