Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Meta Word Embeddings by Unsupervised Weighted Concatenation of Source Embeddings (2204.12386v1)

Published 26 Apr 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Given multiple source word embeddings learnt using diverse algorithms and lexical resources, meta word embedding learning methods attempt to learn more accurate and wide-coverage word embeddings. Prior work on meta-embedding has repeatedly discovered that simple vector concatenation of the source embeddings to be a competitive baseline. However, it remains unclear as to why and when simple vector concatenation can produce accurate meta-embeddings. We show that weighted concatenation can be seen as a spectrum matching operation between each source embedding and the meta-embedding, minimising the pairwise inner-product loss. Following this theoretical analysis, we propose two \emph{unsupervised} methods to learn the optimal concatenation weights for creating meta-embeddings from a given set of source embeddings. Experimental results on multiple benchmark datasets show that the proposed weighted concatenated meta-embedding methods outperform previously proposed meta-embedding learning methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)