Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Meta Word Embeddings by Unsupervised Weighted Concatenation of Source Embeddings (2204.12386v1)

Published 26 Apr 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Given multiple source word embeddings learnt using diverse algorithms and lexical resources, meta word embedding learning methods attempt to learn more accurate and wide-coverage word embeddings. Prior work on meta-embedding has repeatedly discovered that simple vector concatenation of the source embeddings to be a competitive baseline. However, it remains unclear as to why and when simple vector concatenation can produce accurate meta-embeddings. We show that weighted concatenation can be seen as a spectrum matching operation between each source embedding and the meta-embedding, minimising the pairwise inner-product loss. Following this theoretical analysis, we propose two \emph{unsupervised} methods to learn the optimal concatenation weights for creating meta-embeddings from a given set of source embeddings. Experimental results on multiple benchmark datasets show that the proposed weighted concatenated meta-embedding methods outperform previously proposed meta-embedding learning methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.