Emergent Mind

Abstract

Currently, the genetic programming version of the gene-pool optimal mixing evolutionary algorithm (GP-GOMEA) is among the top-performing algorithms for symbolic regression (SR). A key strength of GP-GOMEA is its way of performing variation, which dynamically adapts to the emergence of patterns in the population. However, GP-GOMEA lacks a mechanism to optimize coefficients. In this paper, we study how fairly simple approaches for optimizing coefficients can be integrated into GP-GOMEA. In particular, we considered two variants of Gaussian coefficient mutation. We performed experiments using different settings on 23 benchmark problems, and used machine learning to estimate what aspects of coefficient mutation matter most. We find that the most important aspect is that the number of coefficient mutation attempts needs to be commensurate with the number of mixing operations that GP-GOMEA performs. We applied GP-GOMEA with the best-performing coefficient mutation approach to the data sets of SRBench, a large SR benchmark, for which a ground-truth underlying equation is known. We find that coefficient mutation can help re-discovering the underlying equation by a substantial amount, but only when no noise is added to the target variable. In the presence of noise, GP-GOMEA with coefficient mutation discovers alternative but similarly-accurate equations.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.