Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ClothFormer:Taming Video Virtual Try-on in All Module (2204.12151v1)

Published 26 Apr 2022 in cs.CV

Abstract: The task of video virtual try-on aims to fit the target clothes to a person in the video with spatio-temporal consistency. Despite tremendous progress of image virtual try-on, they lead to inconsistency between frames when applied to videos. Limited work also explored the task of video-based virtual try-on but failed to produce visually pleasing and temporally coherent results. Moreover, there are two other key challenges: 1) how to generate accurate warping when occlusions appear in the clothing region; 2) how to generate clothes and non-target body parts (e.g. arms, neck) in harmony with the complicated background; To address them, we propose a novel video virtual try-on framework, ClothFormer, which successfully synthesizes realistic, harmonious, and spatio-temporal consistent results in complicated environment. In particular, ClothFormer involves three major modules. First, a two-stage anti-occlusion warping module that predicts an accurate dense flow mapping between the body regions and the clothing regions. Second, an appearance-flow tracking module utilizes ridge regression and optical flow correction to smooth the dense flow sequence and generate a temporally smooth warped clothing sequence. Third, a dual-stream transformer extracts and fuses clothing textures, person features, and environment information to generate realistic try-on videos. Through rigorous experiments, we demonstrate that our method highly surpasses the baselines in terms of synthesized video quality both qualitatively and quantitatively.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.