Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deeper Insights into the Robustness of ViTs towards Common Corruptions (2204.12143v3)

Published 26 Apr 2022 in cs.CV

Abstract: With Vision Transformers (ViTs) making great advances in a variety of computer vision tasks, recent literature have proposed various variants of vanilla ViTs to achieve better efficiency and efficacy. However, it remains unclear how their unique architecture impact robustness towards common corruptions. In this paper, we make the first attempt to probe into the robustness gap among ViT variants and explore underlying designs that are essential for robustness. Through an extensive and rigorous benchmarking, we demonstrate that simple architecture designs such as overlapping patch embedding and convolutional feed-forward network (FFN) can promote the robustness of ViTs. Moreover, since training ViTs relies heavily on data augmentation, whether previous CNN-based augmentation strategies that are targeted at robustness purposes can still be useful is worth investigating. We explore different data augmentation on ViTs and verify that adversarial noise training is powerful while fourier-domain augmentation is inferior. Based on these findings, we introduce a novel conditional method of generating dynamic augmentation parameters conditioned on input images, offering state-of-the-art robustness towards common corruptions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.