Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Reformulating Speaker Diarization as Community Detection With Emphasis On Topological Structure (2204.12112v1)

Published 26 Apr 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Clustering-based speaker diarization has stood firm as one of the major approaches in reality, despite recent development in end-to-end diarization. However, clustering methods have not been explored extensively for speaker diarization. Commonly-used methods such as k-means, spectral clustering, and agglomerative hierarchical clustering only take into account properties such as proximity and relative densities. In this paper we propose to view clustering-based diarization as a community detection problem. By doing so the topological structure is considered. This work has four major contributions. First it is shown that Leiden community detection algorithm significantly outperforms the previous methods on the clustering of speaker-segments. Second, we propose to use uniform manifold approximation to reduce dimension while retaining global and local topological structure. Third, a masked filtering approach is introduced to extract "clean" speaker embeddings. Finally, the community structure is applied to an end-to-end post-processing network to obtain diarization results. The final system presents a relative DER reduction of up to 70 percent. The breakdown contribution of each component is analyzed.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)