Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ProCST: Boosting Semantic Segmentation Using Progressive Cyclic Style-Transfer (2204.11891v2)

Published 25 Apr 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Using synthetic data for training neural networks that achieve good performance on real-world data is an important task as it can reduce the need for costly data annotation. Yet, synthetic and real world data have a domain gap. Reducing this gap, also known as domain adaptation, has been widely studied in recent years. Closing the domain gap between the source (synthetic) and target (real) data by directly performing the adaptation between the two is challenging. In this work, we propose a novel two-stage framework for improving domain adaptation techniques on image data. In the first stage, we progressively train a multi-scale neural network to perform image translation from the source domain to the target domain. We denote the new transformed data as "Source in Target" (SiT). Then, we insert the generated SiT data as the input to any standard UDA approach. This new data has a reduced domain gap from the desired target domain, which facilitates the applied UDA approach to close the gap further. We emphasize the effectiveness of our method via a comparison to other leading UDA and image-to-image translation techniques when used as SiT generators. Moreover, we demonstrate the improvement of our framework with three state-of-the-art UDA methods for semantic segmentation, HRDA, DAFormer and ProDA, on two UDA tasks, GTA5 to Cityscapes and Synthia to Cityscapes.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube