Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

ProCST: Boosting Semantic Segmentation Using Progressive Cyclic Style-Transfer (2204.11891v2)

Published 25 Apr 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Using synthetic data for training neural networks that achieve good performance on real-world data is an important task as it can reduce the need for costly data annotation. Yet, synthetic and real world data have a domain gap. Reducing this gap, also known as domain adaptation, has been widely studied in recent years. Closing the domain gap between the source (synthetic) and target (real) data by directly performing the adaptation between the two is challenging. In this work, we propose a novel two-stage framework for improving domain adaptation techniques on image data. In the first stage, we progressively train a multi-scale neural network to perform image translation from the source domain to the target domain. We denote the new transformed data as "Source in Target" (SiT). Then, we insert the generated SiT data as the input to any standard UDA approach. This new data has a reduced domain gap from the desired target domain, which facilitates the applied UDA approach to close the gap further. We emphasize the effectiveness of our method via a comparison to other leading UDA and image-to-image translation techniques when used as SiT generators. Moreover, we demonstrate the improvement of our framework with three state-of-the-art UDA methods for semantic segmentation, HRDA, DAFormer and ProDA, on two UDA tasks, GTA5 to Cityscapes and Synthia to Cityscapes.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.