Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Computational Theory of Learning Flexible Reward-Seeking Behavior with Place Cells (2204.11843v2)

Published 22 Apr 2022 in q-bio.NC, cs.AI, cs.LG, and cs.NE

Abstract: An important open question in computational neuroscience is how various spatially tuned neurons, such as place cells, are used to support the learning of reward-seeking behavior of an animal. Existing computational models either lack biological plausibility or fall short of behavioral flexibility when environments change. In this paper, we propose a computational theory that achieves behavioral flexibility with better biological plausibility. We first train a mixture of Gaussian distributions to model the ensemble of firing fields of place cells. Then we propose a Hebbian-like rule to learn the synaptic strength matrix among place cells. This matrix is interpreted as the transition rate matrix of a continuous time Markov chain to generate the sequential replay of place cells. During replay, the synaptic strengths from place cells to medium spiny neurons (MSN) are learned by a temporal-difference like rule to store place-reward associations. After replay, the activation of MSN will ramp up when an animal approaches the rewarding place, so the animal can move along the direction where the MSN activation is increasing to find the rewarding place. We implement our theory into a high-fidelity virtual rat in the MuJoCo physics simulator. In a complex maze, the rat shows significantly better learning efficiency and behavioral flexibility than a rat that implements a neuroscience-inspired reinforcement learning algorithm, deep Q-network.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)