Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automating Neural Architecture Design without Search (2204.11838v1)

Published 21 Apr 2022 in cs.LG

Abstract: Neural structure search (NAS), as the mainstream approach to automate deep neural architecture design, has achieved much success in recent years. However, the performance estimation component adhering to NAS is often prohibitively costly, which leads to the enormous computational demand. Though a large number of efforts have been dedicated to alleviating this pain point, no consensus has been made yet on which is optimal. In this paper, we study the automated architecture design from a new perspective that eliminates the need to sequentially evaluate each neural architecture generated during algorithm execution. Specifically, the proposed approach is built by learning the knowledge of high-level experts in designing state-of-the-art architectures, and then the new architecture is directly generated upon the knowledge learned. We implemented the proposed approach by using a graph neural network for link prediction and acquired the knowledge from NAS-Bench-101. Compared to existing peer competitors, we found a competitive network with minimal cost. In addition, we also utilized the learned knowledge from NAS-Bench-101 to automate architecture design in the DARTS search space, and achieved 97.82% accuracy on CIFAR10, and 76.51% top-1 accuracy on ImageNet consuming only $2\times10{-4}$ GPU days. This also demonstrates the high transferability of the proposed approach, and can potentially lead to a new, more computationally efficient paradigm in this research direction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube