Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Selective Cross-Task Distillation (2204.11526v3)

Published 25 Apr 2022 in cs.LG and cs.CV

Abstract: The outpouring of various pre-trained models empowers knowledge distillation by providing abundant teacher resources, but there lacks a developed mechanism to utilize these teachers adequately. With a massive model repository composed of teachers pre-trained on diverse tasks, we must surmount two obstacles when using knowledge distillation to learn a new task. First, given a fixed computing budget, it is not affordable to try each teacher and train the student repeatedly, making it necessary to seek out the most contributive teacher precisely and efficiently. Second, semantic gaps exist between the teachers and the target student since they are trained on different tasks. Thus, we need to extract knowledge from a general label space that may be different from the student's. Faced with these two challenges, we study a new setting named selective cross-task distillation that includes teacher assessment and generalized knowledge reuse. We bridge the teacher's label space and the student's label space through optimal transport. The transportation cost from the teacher's prediction to the student's prediction measures the relatedness between two tasks and acts as an objective for distillation. Our method reuses cross-task knowledge from a distinct label space and efficiently assesses teachers without enumerating the model repository. Experiments demonstrate the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube