Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Selective Cross-Task Distillation (2204.11526v3)

Published 25 Apr 2022 in cs.LG and cs.CV

Abstract: The outpouring of various pre-trained models empowers knowledge distillation by providing abundant teacher resources, but there lacks a developed mechanism to utilize these teachers adequately. With a massive model repository composed of teachers pre-trained on diverse tasks, we must surmount two obstacles when using knowledge distillation to learn a new task. First, given a fixed computing budget, it is not affordable to try each teacher and train the student repeatedly, making it necessary to seek out the most contributive teacher precisely and efficiently. Second, semantic gaps exist between the teachers and the target student since they are trained on different tasks. Thus, we need to extract knowledge from a general label space that may be different from the student's. Faced with these two challenges, we study a new setting named selective cross-task distillation that includes teacher assessment and generalized knowledge reuse. We bridge the teacher's label space and the student's label space through optimal transport. The transportation cost from the teacher's prediction to the student's prediction measures the relatedness between two tasks and acts as an objective for distillation. Our method reuses cross-task knowledge from a distinct label space and efficiently assesses teachers without enumerating the model repository. Experiments demonstrate the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.