Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Online Stochastic Optimization Approach for Insulin Intensification in Type 2 Diabetes with Attention to Pseudo-Hypoglycemia (2204.11380v2)

Published 24 Apr 2022 in eess.SY and cs.SY

Abstract: In this paper, we present a model free approach to calculate long-acting insulin doses for Type 2 Diabetic (T2D) subjects in order to bring their blood glucose (BG) concentration to be within a safe range. The proposed strategy tunes the parameters of a proposed control law by using a zeroth-order online stochastic optimization approach for a defined cost function. The strategy uses gradient estimates obtained by a Recursive Least Square (RLS) scheme in an adaptive moment estimation based approach named AdaBelief. Additionally, we show how the proposed strategy with a feedback rating measurement can accommodate for a phenomena known as relative hypoglycemia or pseudo-hypoglycemia (PHG) in which subjects experience hypoglycemia symptoms depending on how quick their BG concentration is lowered. The performance of the insulin calculation strategy is demonstrated and compared with current insulin calculation strategies using simulations with three different models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.