Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improved far-field speech recognition using Joint Variational Autoencoder (2204.11286v1)

Published 24 Apr 2022 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: Automatic Speech Recognition (ASR) systems suffer considerably when source speech is corrupted with noise or room impulse responses (RIR). Typically, speech enhancement is applied in both mismatched and matched scenario training and testing. In matched setting, acoustic model (AM) is trained on dereverberated far-field features while in mismatched setting, AM is fixed. In recent past, mapping speech features from far-field to close-talk using denoising autoencoder (DA) has been explored. In this paper, we focus on matched scenario training and show that the proposed joint VAE based mapping achieves a significant improvement over DA. Specifically, we observe an absolute improvement of 2.5% in word error rate (WER) compared to DA based enhancement and 3.96% compared to AM trained directly on far-field filterbank features.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube