Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions? (2204.11231v2)

Published 24 Apr 2022 in cs.LG, cs.AI, cs.NA, cs.NE, math.FA, and math.NA

Abstract: We study the problem of approximating compactly-supported integrable functions while implementing their support set using feedforward neural networks. Our first main result transcribes this "structured" approximation problem into a universality problem. We do this by constructing a refinement of the usual topology on the space $L1_{\operatorname{loc}}(\mathbb{R}d,\mathbb{R}D)$ of locally-integrable functions in which compactly-supported functions can only be approximated in $L1$-norm by functions with matching discretized support. We establish the universality of ReLU feedforward networks with bilinear pooling layers in this refined topology. Consequentially, we find that ReLU feedforward networks with bilinear pooling can approximate compactly supported functions while implementing their discretized support. We derive a quantitative uniform version of our universal approximation theorem on the dense subclass of compactly-supported Lipschitz functions. This quantitative result expresses the depth, width, and the number of bilinear pooling layers required to construct this ReLU network via the target function's regularity, the metric capacity and diameter of its essential support, and the dimensions of the inputs and output spaces. Conversely, we show that polynomial regressors and analytic feedforward networks are not universal in this space.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.