Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimizing Task Placement and Online Scheduling for Distributed GNN Training Acceleration (2204.11224v1)

Published 24 Apr 2022 in cs.DC

Abstract: Training Graph Neural Networks (GNN) on large graphs is resource-intensive and time-consuming, mainly due to the large graph data that cannot be fit into the memory of a single machine, but have to be fetched from distributed graph storage and processed on the go. Unlike distributed deep neural network (DNN) training, the bottleneck in distributed GNN training lies largely in large graph data transmission for constructing mini-batches of training samples. Existing solutions often advocate data-computation colocation, and do not work well with limited resources where the colocation is infeasible. The potentials of strategical task placement and optimal scheduling of data transmission and task execution have not been well explored. This paper designs an efficient algorithm framework for task placement and execution scheduling of distributed GNN training, to better resource utilization, improve execution pipelining, and expediting training completion. Our framework consists of two modules: (i) an online scheduling algorithm that schedules the execution of training tasks, and the data transmission plan; and (ii) an exploratory task placement scheme that decides the placement of each training task. We conduct thorough theoretical analysis, testbed experiments and simulation studies, and observe up to 67% training speed-up with our algorithm as compared to representative baselines.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.