Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Few-Shot Speaker Identification Using Depthwise Separable Convolutional Network with Channel Attention (2204.11180v1)

Published 24 Apr 2022 in eess.AS and cs.SD

Abstract: Although few-shot learning has attracted much attention from the fields of image and audio classification, few efforts have been made on few-shot speaker identification. In the task of few-shot learning, overfitting is a tough problem mainly due to the mismatch between training and testing conditions. In this paper, we propose a few-shot speaker identification method which can alleviate the overfitting problem. In the proposed method, the model of a depthwise separable convolutional network with channel attention is trained with a prototypical loss function. Experimental datasets are extracted from three public speech corpora: Aishell-2, VoxCeleb1 and TORGO. Experimental results show that the proposed method exceeds state-of-the-art methods for few-shot speaker identification in terms of accuracy and F-score.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.