Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Discriminative Feature Learning Framework with Gradient Preference for Anomaly Detection (2204.11014v1)

Published 23 Apr 2022 in cs.LG

Abstract: Unsupervised representation learning has been extensively employed in anomaly detection, achieving impressive performance. Extracting valuable feature vectors that can remarkably improve the performance of anomaly detection are essential in unsupervised representation learning. To this end, we propose a novel discriminative feature learning framework with gradient preference for anomaly detection. Specifically, we firstly design a gradient preference based selector to store powerful feature points in space and then construct a feature repository, which alleviate the interference of redundant feature vectors and improve inference efficiency. To overcome the looseness of feature vectors, secondly, we present a discriminative feature learning with center constrain to map the feature repository to a compact subspace, so that the anomalous samples are more distinguishable from the normal ones. Moreover, our method can be easily extended to anomaly localization. Extensive experiments on popular industrial and medical anomaly detection datasets demonstrate our proposed framework can achieve competitive results in both anomaly detection and localization. More important, our method outperforms the state-of-the-art in few shot anomaly detection.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.