Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A note on the $f$-divergences between multivariate location-scale families with either prescribed scale matrices or location parameters (2204.10952v3)

Published 22 Apr 2022 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: We first extend the result of Ali and Silvey [Journal of the Royal Statistical Society: Series B, 28.1 (1966), 131-142] who first reported that any $f$-divergence between two isotropic multivariate Gaussian distributions amounts to a corresponding strictly increasing scalar function of their corresponding Mahalanobis distance. We report sufficient conditions on the standard probability density function generating a multivariate location family and the function generator $f$ in order to generalize this result. This property is useful in practice as it allows to compare exactly $f$-divergences between densities of these location families via their corresponding Mahalanobis distances, even when the $f$-divergences are not available in closed-form as it is the case, for example, for the Jensen-Shannon divergence or the total variation distance between densities of a normal location family. Second, we consider $f$-divergences between densities of multivariate scale families: We recall Ali and Silvey 's result that for normal scale families we get matrix spectral divergences, and we extend this result to densities of a scale family.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com