Papers
Topics
Authors
Recent
2000 character limit reached

Learning-to-Rank at the Speed of Sampling: Plackett-Luce Gradient Estimation With Minimal Computational Complexity (2204.10872v2)

Published 22 Apr 2022 in cs.LG and cs.IR

Abstract: Plackett-Luce gradient estimation enables the optimization of stochastic ranking models within feasible time constraints through sampling techniques. Unfortunately, the computational complexity of existing methods does not scale well with the length of the rankings, i.e. the ranking cutoff, nor with the item collection size. In this paper, we introduce the novel PL-Rank-3 algorithm that performs unbiased gradient estimation with a computational complexity comparable to the best sorting algorithms. As a result, our novel learning-to-rank method is applicable in any scenario where standard sorting is feasible in reasonable time. Our experimental results indicate large gains in the time required for optimization, without any loss in performance. For the field, our contribution could potentially allow state-of-the-art learning-to-rank methods to be applied to much larger scales than previously feasible.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.