Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Scalable symmetric Tucker tensor decomposition (2204.10824v2)

Published 22 Apr 2022 in math.NA and cs.NA

Abstract: We study the best low-rank Tucker decomposition of symmetric tensors. The motivating application is decomposing higher-order multivariate moments. Moment tensors have special structure and are important to various data science problems. We advocate for projected gradient descent (PGD) method and higher-order eigenvalue decomposition (HOEVD) approximation as computation schemes. Most importantly, we develop scalable adaptations of the basic PGD and HOEVD methods to decompose sample moment tensors. With the help of implicit and streaming techniques, we evade the overhead cost of building and storing the moment tensor. Such reductions make computing the Tucker decomposition realizable for large data instances in high dimensions. Numerical experiments demonstrate the efficiency of the algorithms and the applicability of moment tensor decompositions to real-world datasets. Finally we study the convergence on the Grassmannian manifold, and prove that the update sequence derived by the PGD solver achieves first- and second-order criticality.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.