Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Tag-Based Attention Guided Bottom-Up Approach for Video Instance Segmentation (2204.10765v1)

Published 22 Apr 2022 in cs.CV and eess.IV

Abstract: Video Instance Segmentation is a fundamental computer vision task that deals with segmenting and tracking object instances across a video sequence. Most existing methods typically accomplish this task by employing a multi-stage top-down approach that usually involves separate networks to detect and segment objects in each frame, followed by associating these detections in consecutive frames using a learned tracking head. In this work, however, we introduce a simple end-to-end trainable bottom-up approach to achieve instance mask predictions at the pixel-level granularity, instead of the typical region-proposals-based approach. Unlike contemporary frame-based models, our network pipeline processes an input video clip as a single 3D volume to incorporate temporal information. The central idea of our formulation is to solve the video instance segmentation task as a tag assignment problem, such that generating distinct tag values essentially separates individual object instances across the video sequence (here each tag could be any arbitrary value between 0 and 1). To this end, we propose a novel spatio-temporal tagging loss that allows for sufficient separation of different objects as well as necessary identification of different instances of the same object. Furthermore, we present a tag-based attention module that improves instance tags, while concurrently learning instance propagation within a video. Evaluations demonstrate that our method provides competitive results on YouTube-VIS and DAVIS-19 datasets, and has minimum run-time compared to other state-of-the-art performance methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)