Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Real-time HOG+SVM based object detection using SoC FPGA for a UHD video stream (2204.10619v1)

Published 22 Apr 2022 in cs.CV, cs.AR, and eess.IV

Abstract: Object detection is an essential component of many vision systems. For example, pedestrian detection is used in advanced driver assistance systems (ADAS) and advanced video surveillance systems (AVSS). Currently, most detectors use deep convolutional neural networks (e.g., the YOLO -- You Only Look Once -- family), which, however, due to their high computational complexity, are not able to process a very high-resolution video stream in real-time, especially within a limited energy budget. In this paper we present a hardware implementation of the well-known pedestrian detector with HOG (Histogram of Oriented Gradients) feature extraction and SVM (Support Vector Machine) classification. Our system running on AMD Xilinx Zynq UltraScale+ MPSoC (Multiprocessor System on Chip) device allows real-time processing of 4K resolution (UHD -- Ultra High Definition, 3840 x 2160 pixels) video for 60 frames per second. The system is capable of detecting a pedestrian in a single scale. The results obtained confirm the high suitability of reprogrammable devices in the real-time implementation of embedded vision systems.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.