Papers
Topics
Authors
Recent
Search
2000 character limit reached

Zero-shot Query Contextualization for Conversational Search

Published 22 Apr 2022 in cs.IR | (2204.10613v1)

Abstract: Current conversational passage retrieval systems cast conversational search into ad-hoc search by using an intermediate query resolution step that places the user's question in context of the conversation. While the proposed methods have proven effective, they still assume the availability of large-scale question resolution and conversational search datasets. To waive the dependency on the availability of such data, we adapt a pre-trained token-level dense retriever on ad-hoc search data to perform conversational search with no additional fine-tuning. The proposed method allows to contextualize the user question within the conversation history, but restrict the matching only between question and potential answer. Our experiments demonstrate the effectiveness of the proposed approach. We also perform an analysis that provides insights of how contextualization works in the latent space, in essence introducing a bias towards salient terms from the conversation.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.