Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A piece-wise constant approximation for non-conjugate Gaussian Process models (2204.10575v1)

Published 22 Apr 2022 in cs.LG and stat.ML

Abstract: Gaussian Processes (GPs) are a versatile and popular method in Bayesian Machine Learning. A common modification are Sparse Variational Gaussian Processes (SVGPs) which are well suited to deal with large datasets. While GPs allow to elegantly deal with Gaussian-distributed target variables in closed form, their applicability can be extended to non-Gaussian data as well. These extensions are usually impossible to treat in closed form and hence require approximate solutions. This paper proposes to approximate the inverse-link function, which is necessary when working with non-Gaussian likelihoods, by a piece-wise constant function. It will be shown that this yields a closed form solution for the corresponding SVGP lower bound. In addition, it is demonstrated how the piece-wise constant function itself can be optimized, resulting in an inverse-link function that can be learnt from the data at hand.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube