Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A piece-wise constant approximation for non-conjugate Gaussian Process models (2204.10575v1)

Published 22 Apr 2022 in cs.LG and stat.ML

Abstract: Gaussian Processes (GPs) are a versatile and popular method in Bayesian Machine Learning. A common modification are Sparse Variational Gaussian Processes (SVGPs) which are well suited to deal with large datasets. While GPs allow to elegantly deal with Gaussian-distributed target variables in closed form, their applicability can be extended to non-Gaussian data as well. These extensions are usually impossible to treat in closed form and hence require approximate solutions. This paper proposes to approximate the inverse-link function, which is necessary when working with non-Gaussian likelihoods, by a piece-wise constant function. It will be shown that this yields a closed form solution for the corresponding SVGP lower bound. In addition, it is demonstrated how the piece-wise constant function itself can be optimized, resulting in an inverse-link function that can be learnt from the data at hand.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.